This game would be great for individual student practice as well as whole group on an interactive whiteboard.
Saturday, September 15, 2012
Break Apart game
I will admit that when I saw Greg Tang speak years ago at a math conference I got a little math crush on him that has never gone away. When he talks about his beliefs and ideas about how math should be taught, I find myself nodding in agreement like a bobble head doll. I love this game, Break Apart, on his math games site. It has students drilling fast strategies instead of just drilling facts they don't have a strategy for. It is worth the small subscription fee.
Addition Strategies
At the beginning of the year in third grade we review addition strategies. My goal is not to make students use a particular strategy, but to give some common language to efficient strategies so that, in the future, we can discuss them using terminology we all know. I pose an addition problem, students solve, and I have several students share their strategies with the class. I tell them that there are many fast, smart strategies to use, but that they can use the strategies on this chart when they need to. I refer back to it when I am helping a student that is using a slow or ineffective strategy for the next few months.
I heard somewhere, I don't remember where, that we don't really memorize many addition facts even as adults. We just do a fast mental strategy. I doubted that at first, but I think it is true. Think about 8 + 6, for example. I don't have it memorized, but I think 8 + 2 = 10, then I add the 4 left in the 6 to =14. I do all that in less than 2 seconds. So repeating or drilling the fact over and over without having a fast strategy in place first may be a waste of my students' time.
Addition Strategies- many names are from Bridges math curriculum |
Sunday, September 9, 2012
Addition and Subtraction Strategy debate
I somehow stumbled on this old article explaining multiple digit addition and subtraction strategies.
What Happened to Borrowing and Carrying?
What is interesting to me is not the article, sorry author, but the debate in the comments thread that ensues. I have often had trouble understanding why a parent or teacher would be opposed to their child knowing and understanding more than one strategy for addition and subtraction. The comments on this thread kind of enlightened me. Some people view these additional strategies as unsophisticated or stepping stones to the traditional algorithm, slower than traditional methods, or just don't realize the power of students building understanding rather than just memorizing a procedure. One parent that commented was upset that her child was getting poor grades in math and understood the traditional algorithms, but not these new ways of adding and subtracting. I got her point, but still thought that she didn't understand the bigger issue here. Student created and alternative algorithms help students understand the concepts at a deeper level and help connect ideas in math. I always have students that have been taught to borrow and carry by their parents at home. I love that these parents want to do math at home. The difficulty is when students or their parents think that these strategies are the ONLY or BEST strategies.
I tell students in my room that they can use any strategy if it fits these guidlines...
What Happened to Borrowing and Carrying?
What is interesting to me is not the article, sorry author, but the debate in the comments thread that ensues. I have often had trouble understanding why a parent or teacher would be opposed to their child knowing and understanding more than one strategy for addition and subtraction. The comments on this thread kind of enlightened me. Some people view these additional strategies as unsophisticated or stepping stones to the traditional algorithm, slower than traditional methods, or just don't realize the power of students building understanding rather than just memorizing a procedure. One parent that commented was upset that her child was getting poor grades in math and understood the traditional algorithms, but not these new ways of adding and subtracting. I got her point, but still thought that she didn't understand the bigger issue here. Student created and alternative algorithms help students understand the concepts at a deeper level and help connect ideas in math. I always have students that have been taught to borrow and carry by their parents at home. I love that these parents want to do math at home. The difficulty is when students or their parents think that these strategies are the ONLY or BEST strategies.
I tell students in my room that they can use any strategy if it fits these guidlines...
- You must understand the strategy and why it works.
- It must lead the the right answer for you the vast majority of the time.
- It must be efficient.
My journey teaching math problem solving
When I started teaching I was working as a Title I Math Specialist 10 years ago pulling whole classes K-4 to teach math problem solving. Problem solving was viewed as a completely separate part of math, possibly even a separate subject, not connected to what students were learning during math time in the classroom. I was expected to teach a specific series of steps to solve problems. Students had to read the problem two times, underline important information (and sometimes write a bulleted list), write a sentence starting with "the problem I am trying to solve is...", solve the problem using the strategy being taught (work backwards, make a list...), put a box around the answer, write a paragraph about how they solved the problem, and some other steps I am surely forgetting.
While I have always loved teaching problem solving in math something about teaching it that way always seemed phony and I had a suspicion that they students thought so too. Many of the things I made students do were assuming they were not capable of solving the problem (making a list of the important information, writing the sentence about what they were trying to solve, and using a prescribed strategy), made to do to make the teacher's job easier (putting a box around the answer and writing a paragraph to explain thinking), and just not authentic to the the way we problem solve in real life. There were good lessons for students in there being wrapped in bad packaging.
I was in that position for 2 1/2 years. Now I am teaching 3rd grade (after teacher 4th grade for a few years) and have come to the conclusion that...
While I have always loved teaching problem solving in math something about teaching it that way always seemed phony and I had a suspicion that they students thought so too. Many of the things I made students do were assuming they were not capable of solving the problem (making a list of the important information, writing the sentence about what they were trying to solve, and using a prescribed strategy), made to do to make the teacher's job easier (putting a box around the answer and writing a paragraph to explain thinking), and just not authentic to the the way we problem solve in real life. There were good lessons for students in there being wrapped in bad packaging.
I was in that position for 2 1/2 years. Now I am teaching 3rd grade (after teacher 4th grade for a few years) and have come to the conclusion that...
- Problem solving is probably the most important set of skills I can teach students in math.
- Students are innately good problem solvers and do not need me to tell them what strategy to use or a step by step procedure for problem solving.
- Problem solving is not separate from the rest of my math curriculum and can and should be woven into my daily instruction.
- Students develop math skills and become more sophisticated problem solvers by hearing other students share a variety of strategies and their thinking and through minilessons taught by the teacher.
I have a picture in mind of what I want my math classroom to look like incorporating those beliefs as well as others I have about teaching math. The picture is clearer on some days than others. I am using this blog as a way for my to sort out my thinking, record what is working and what is not, document my journey as a math teacher, and to collaborate with other teachers.
Subscribe to:
Posts (Atom)